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of incidence. The (complex) resistivity of the sheet is a function of the gravimetric
moisture content Mg of the leaf, and for all moisture contents, the accuracy of the
resulting prediction is adequate for most practical purposes.

In their natural state leaves are not generally planar, and any curvature may
reduce their backscattering cross sections. To explore this effect, measurements have
been carried out using a rectangular portion of 'a coleus leaf attached to the surfaces of
styrofoam cylinders and spheres of different radii. For a wide range of curvatures, the
reduction in the backscattering cross section at X band is accurately predicted by the
physical optics approximation, and the resulis of a numerical evaluation of the physical
optics integral are almost identical to a Fresniel integral expression derived from a

stationary phase evaluation.

2. Leaf Model
A leaf can be regarded as a thin, non-rnagnetic lossy dielectric layer, and an
effective model for such a layer is an infinitesimally thin resistive sheet. The sheet is
simply an electric current sheet characterized by a (complex) resistivity R where
iZ

Re———. (1)
kt € - 1)

Here, k and Z are the propagation constant and intrinsic impedance respectively of free

space, tis the layer thickness, € is the comp!ex dielectric constant of the material, and a

time factor e-i®t has been assumed and suppressed.

The dielectric constant e = €' + ie" of a leaf is primarily determined by its



gravimetric moisture content Mg, and can be found using a Debye-Cole

dual-dispersion dielectric model [4]. The model predicts €' and €" in terms of the
frequency, temperature and Mg, and approximate empirical expressions valid at

X-band and room temperatures are available [3]. The accuracy is within +20%. The

thickness t of a leaf also depends on its moisture content and decreases with
decreasing Mg. In reality, however, the thickness generally decreases from base to tip
and may vary by as much as 50 percent over the surface. For a class of coleus leaves,
an approximate expression for the average thickness in terms of Mg was given in [3],
but for the coleus leaves used in the present study the thickness was measured at
several points using calipers, and the averages determined. It is worth noting that the
resulting resistivity of the leaf was in good agreement with the value of R measured
using a leaf section placed in a waveguide.

At X-band frequencies and above the physical optics approximation applied to
the resistive sheet model provides an accurate estimate pf the backscattering cross

section of a planar leaf for all moisture contents and most angles of incidence. Fora

sheet lying in the plane & = 0 of a Cartesian coordinate system (&, n, {) and illuminated

by a plane electromagnetic wave having
| A . A A -k -nSsi
E = (& sina sing + 1 sina cos¢ + {cosa) e k(s - naing} (2)
(see Figure 1), the induced electric current is

J = 2Y fnsina T, (6) + L cosacosp Te(o)} & " (3)

where [3]



-1
ryo)=(1 - Bsecs) |

-1
2R
Te(¢) = (1 7cos¢) )

'y and -T'g respectively are the plane wava reflection coefficients for H polarization (o

= n/2) when the magnaetic vector is perpend-cular to the plane of incidence and for E
polarization (a = 0) when the electric vector is similarly inclined. Since R =0

corresponds to perfect conductivity, I'y and I'g show how the current differs from the

current Jpc supported by a perfectly conducting surface. Indeed,
J=J, - NIy +J - Ere(0) (4)

where 7| and £ are unit tangent vectors in and perpendicular to the plane of incidence

respectively.

3. One Dimensional Curvature
In the Appendix expressions are derivad for the backscattering cross section of a

rectangular resistive plate of dimensions a, b as a function of the angle of incidence,

and we now examine the effect of giving the plate a constant radius of curvature p in a

principal plane. As a result of the bending, the plate conforms to a portion of the

surface of a right circular cylinder of radius - as shown in Figure 2.

if the flat plate has length a in the z direction and width b in the y direction, then

b = 2p¢,. The illuminating field is a plane wave propagating in the negative x direction

with



E = (§ sina + 2 coso) o <* P

()

and in the backscattering direction the far field expression for the Hertz vector x is

where the phase origin has been chosen at the front of the cylinder. To ensure that no

portion of the outer surface of the plate is shadowed, it is necessary that 0] < g b,

The resistive sheet current J is given by (3) with the identification

=9, ﬁ =- isin¢‘ o YA cos¢', Q =£ .

Recognizing that the exponent in (5) is simp'y the incident field phase at the surface,

3(¢') = ZY{ - X sing' + 9 cosd’) sina I‘H(q)') +Z cosa cos¢’' FE(¢-)} eikp(1 -cos¢'),

and hence

+
Ikx A A A
T iap I { (-x sing’ + ycos¢'} sina. T, (¢") + z coso cos¢' T (6) }
o2kP(1 - cost) | "
The resulting backscattered far field amplitude is
6+¢,
12 A ' A * i 3
§ = |k2:p J. { y sino FH (4’) + Z COSa l"E (9" } cos¢’ 92|kp(1 - cosy) do’ (6)

0-0,




in terms of which

2 2
0=i—|(9sina+’icosa)-§| : 7)

22 2
onOSS = : |(9 Cos3Q - 2 Slna) * §| . (8)

Two methods were employed to evaluete the integral expression (6) for 5. In the
first, the arc 8 - 6, < ¢' <6 + ¢, was subdivided into 2M segments and each replaced

by a planar strip of width A = poo/Mcenteredat ¢’ =¢'m, m=1,2,...., M, and
tangential to the cylinder. From the formula (A.3) for the backscattered far field

amplitude of an inclined plate, we then have

2 M , ,
= ikaA . A , , Fke(1-@s) siny' (9)
S= o n;{’)} sina. T ,(¢' ) +Z cosa [ (¢’ )} cose’ e WL

with U’ = kAsin¢'m. The summation was carried out numerically, and a comparison

with data obtained from a moment method solution of the integral equation for a curved

resistive strip is given in Section 5.

The second method is entirely analytical and is based on the stationary phase

(SP) approximation. The SP point of the integral in (6) is ¢' = 0 and on the assumption

that kp >> 1, with 8 < ¢, so that the SP point lies within the range of integration,



§=-‘§J§{9sinarH@)+icosarE(0)){F[y/ﬁ;wpe)]m@<¢o-e>1}

where

‘ iu2
r(z)=je du (10)
0

is the finite range Fresnel integral. We remark that for |t| << 1
T(r) =1+ 0(t3), (11)

whereas for |t} >> 1

¥(t) ~ % s eim. (12)

Since I'g(0) = I'y(0) it now follows that

s-2 e § sino+ 2 cosa) Ty (00 7 1o (0, +0) 1+ 7 [4kp (8,601 J(13)

showing that to this approximation there is no depolarization in the backscattering

direction.

It is instructive to examine separately the special case of symmetric (normal)
incidence when 8 = 0. The argument of the Fresnel integrals in (13) is then b/2 ,/ k/p, and

if p>> kb2/4, the approximation (11) implies

ikCab o . A
S= (¥ sina + Z cosa) T (0), (14)
H

in agreement with the known expression for the backscattered far field amplitude of a

planar resistive plate at normal incidence. On the other hand, if p << kb2/4, (12) gives



4X
§=_k_a_‘ /—kﬂ()? sina + 7 cosa) T}, (0) @ 4
2 T

which is the result for a resistive circular cylinder of radius p and length a. For

intermediate values of p the Fresnel integra: must be retained, and when the far field

amplitude is normalized to the flat plate expression (14), denoted by the affix fp,

s 1
= . 1y (15)
s v

independent of the resistivity, where

b\/'k'
Y=o /= (16)
2N p

Calculations based on the formulas (9), (13) and (15) are compared with

numerical results obtained using the moment method and with measured data in

Section 5.

4. Two Dimensional Curvature

We now consider the effect of giving the plate the éame curvature in both
principal planes, so that the platé conforms to a portion of a spherical surface of radius
r. For simplicity the analysis is carried out for a plane wave incident symmetrically, and

the geometry is then as shown in Figure 3.

In terms of the spherical polar coordinates r, €', ¢' such that x = rsin@'cos¢’,

y = rsin@'sin¢’ and z = rcos@', the plate occupies the surface region -g- -6,<0'< % + 6.,

-1(6) < ¢' < 1(8") where 84 = b/(2r) and 1(8") = &/(2rsin®'). The incident electric field is the



same as that in Section 3, and for a perfectly conducting plate the physical optics
expression for the induced electric current &t a point 8, ¢' on the surface is

- . . A . A A A . ikr(1 - sin@'cos¢’)
oo = 2Y{sma sSin'(-x sing' + y cos¢’) + cosa(-X coso' + Z sme'cosq>')}e :

Unit vectors tangential to the surface and perallel and perpendicular respectively to the

plane of incidence are

1 ,=Q{X(1- sin’0' cos’¢') + ¥ (sind’ sin¢’ + 2 cosf') sind' cos¢'},
¢, =Q(Fcoso' +%sine’ sing)
where
Q = (1 - sin2' cos2¢)-1/2,
and in terms ofﬁ , and E , the perfectly conducting plate current is

jpc = 2Y{(sinc sin@' sin¢' + cosa ¢0sO') ﬁ 4 - 8in6' cos¢’ (sina cosO’

. A ikr(1 - sin@’ cos¢’
- cosa sin®’ siny’) € ,} Q e (1 sing"cose)
From (4) it now follows that for a resistive plate the current is
J = 2Y{(sinc sin®’ sing’ + coso cos6’) T ﬁ ; - SinB' cos¢’ (sina cos’

- cosa sing' sing’) T(¢) E 4 Q eikr<1 " Sing’ cose) (17)

where the angie ¢ is such that
coso = sind' cos¢' .

In the backscattering direction the far field expression for the Hertz vector rt is



T

=+0
. 2 ° f(e)
ikx

rt(x)-i—x 'Z—' J. I 3@, ¢ "' ) ging: do dy,

E o -(®)
2%

and when the formula (17) for J is inserted, the backscattered far field amplitude for the

curved resistive plate is found to be

R

—=+0 ,
K22 2.° 16 2 > 2
S= > J- J' [sina?{sin 8’ sin"¢' [,,(0) + cos’ @' Ie(¢)}
y
g_eo -1(@)

+ cosa 2 {sin’e’ sin’¢' Te(0) + cos’e’ W (Y)

+ (cosa y - sina 2) sing' cosd' sing' {Te(9) - I‘H(¢)}:|
. @%sin’ cosg' g2 1! - sind cose) 4o, do'. (18)

The like- and cross-polarized backscattering cross sections can be computed by

substituting (18) in (7) and (8), and depolarization occurs to the extent that 'yand I'g

differ over those portions of the plate that contribute to the integral.

The expression for S was evaluated using methods similar to those employed in
Section 3. The first method is numerical. By subdividing the 8" and ¢' ranges into 2L
and 2M increments respectively and treating each elementary patch as a rectangular

flat plate centered at6' = 0"y , ¢'=¢'m (£=1,2,...,.Lm=1,2,.. ., M) with dimensions
Aq =14, Ay =rsinB'2 A9’ where A6' = 6,/L and A¢' = 1(0')/M, the result is
& 2ikr (1 - cos®', cosd'yy) smU sinV,

= ik
5= 14,4, Q sme' cos¢’. @
on el m Z U1 V1

(19)

10



Here

U1 =kAqcosB'g cosd'n,

V1 =KkAp sing'm
and[ ] denotes the terms in square brackets in (18).

The second method is based on the stationary phase approximation. The

(double) SP point of the integrand in (18) is 9' = n/2, ¢' = 0, and when all the

non-exponential terms are removed from the integrand at this point, we have

L,o

22 2 0 {e)
3- ";_'- (¥ sina + Z cosa) T,,(0) j J. g M1 =S 0% 4y gy
T

5_g 1O
2 %

where we have used the fact that I'g(0) = I'14(0). By expanding the exponent about the

SP point and retaining only the quadratic terms, we then obtain

g - 2kr (7 sina + 2 cosa) [,{0) F (g\/g) 13 (% %) (20)

T
showing that to this approximation there is no depolarization. The amplitude

normalized to its flat plate value (14) is

= Leg) ey 21)

Y 2

independent of the resistivity where

a [k b /k
oS nemfE 22)

11



and the reduction in Sfp is simply the product of the factors appropriate to a

one-dimensional curvature in each of the principal planes of the plate.

The extension to the case of a plane wave which is not incident symmetrically is

trivial. If the plate is rotated through an angle 6 about the y axis (see Figure 3) with

18] < =/2 - 6, so that no part of the plate is shadowed, the far field amplitude

corresponding to (20) is

§='—(ysma+zcosa)r(0)?(2\/— {?lzf(1 i)]
1L
7[2\/—(1-—)1} (23)

Here also the expression is a natural extension of the formula for a one-dimensional

curvature.

5. Comparison with Experimental Data

To test the validity of the resistive sheet model and to explore the effect of leaf
curvature, a series of measurements was carried out using rectangular leaf sections.
Coleus leaves were chosen because they ratain their moisture after being cut: at room
temperature (23°C) tﬁe change in moisture content after 20 minutes was less than one
percent. The scattering measurements were made at X-band in a small tapered
anechoic chamber using an HP 8510A network analyzer. A schematic of the

equipment is shown in Figure 4, and the general procedures employed are described

12



in [3]. The only significant improvements made to the original system were the
introduction of an automatic target positioner to permit measurements at specified
increments in angle, and the use of strings ctretched between synchronously rotating
stepper motors at the top and bottom of the chamber to facilitate the target suppont.
Since a single linearly-polarized horn antenna was used to radiate and receive the
signals, only the like-polarized backscatterirg cross section could be measured. A

small metal sphere was employed for calibration.

Some results for a plane rectangular section of a leaf having a=1.33Land b =2A
with Mg = 0.7 and t = 0.5 mm are shown in Figures 5 and 6. E polarization (a = 0) was
used in both cases. In Figure 5 the leaf was initially vertical (B =0)andthe dataas a
function of the rotation angle ¢ are in good agreement with the curve computed from

(A.4). In Figure 6 the leaf was tilted back ([} = 8 deg.) and a similar comparison with
(A.8) is shown. For completeness, the cross polarized cross section computed using
(A.9) is included in Figure 6. |

With the confidence that physical optics in conjunction with the resistive sheet
model is adequate for planar leaves, we ncw compared the predictions for curved
leaves with moment method data and with experimental results. To check the accuracy
of (9), the scattering \)vas computed using & two-dimensional moment method code [5]
for resistive strips extended to the three-dimensional case by assuming that the current
is independent of z, and in Figure 7 the backscattering cross section computed using

(9) is compared with moment method data for a curved leaf having radius of curvature

13



p = 2\ and for a flat leaf (p = «). The overzll agreement is good out to 50 and 70
degrees respectively, where the lower limit for the curved leaf corresponds to the onset

of shadowing. In Figure 8 the Fresnel integral approximation (13) is compared with (9)
for curved leaves having p = 2A and 3A. The agreement is excellent as long as the

stationary phase point is on the leaf, i.e. for |8] < 28 and 19 degrees respectively, but
remains good for incidence angles out to about 45 degrees.

Experimental measurements were also performed. In the first experiment a
rectangular leaf section of the same size as before was attached to the surface of a
right circular cylinder of styrofoam and the normal incidence backscattering cross
section was measured. Cylinders of six different radii were used and the cross sections '

were normalized to that of the planar leaf. The measured cross section reductions for E

polarization are plotted as a function of p/A in Figure 9 and compared with the curves

computed using the numerical summation :9) and the stationary phase approximation

(15). The agreement is excellent. As p/A clecreases from 11 to 1, yincreases from 0.76
to 3.14. Over the entire range, (9) and (15) yield virtually identical results, and (15)
provides a simple and accurate expressior: for the cross section reduction.

For the case of a two dimensional curvature a similar experiment was performed
in which a leaf sectioﬁ was mounted on the surface of a styrofoam sphere. Spheres of

six different radii were used. To facilitate the mounting a naturally-curved leaf was

chosen and cut to conform to the sphericé! region 121 -8,<8'< Jél +6,, 0,<¢' <0,

where 84 = b/(2r), ¢q = a(2rsinby), with a = 1.33)A and b = 2A. The region is slightly

14



different from that specified in Section 5, and the leaf sections are no longer
rectangular when flattened out, but calculations based on the summation (19) showed
that the cross section reduction is the same for both. The measured data are compared
with the numerical and analytical results (19) and (21) in Figure 10. The agreement is
again excellent and confirms the validity of the simple formula (21) for curvature in two

dimensions.

As evident from the preceding figures, curvature can have a significant effect on
the backscattering cross section, and in a practical situation, it is important to know the
frequency range where any curvature of a leaf must be taken into account. To this end,
Figure 11 shows the normal incidence cross section reductions versus frequency for

three leaf sections 6 cm on a side, curved in one dimension with radii 3, 6 and 12 cm.

In all three cases Mg = 0.7, © = 0.5 mm and the frequency dependence implied by (1)

and the Debye-Cole dielectric model was included. Once again (9) and (15) yield

virtually identical results and if, for example, 5 = 12 cm, the curvature produces a

significant effect only at C-band frequencies and above.

6. Conclusions

The resistive sheet model in conjuncticn with the physical optics approximation
which was previously‘shown [3] to accurately predict the backscattering cross section of
a planar leaf has now been extended to the case of a curved leaf. For a rectangular
section of a leaf curved in one and two dimensions, the physical optics expression for

the backscattered field as a function of the angle of incidence was evaluated

15



numerically and by a stationary phase approximation. The latter leads to simple
analytical expressions for the cross section “eduction produced by the curvature.
Numerical results based on the two method: are virtually identical over a wide range of
incidence angles and in excellent agreemert with measured X-band data for
rectangular sections of coleus leaves applied to surfaces of styrofoam cylinders and
spheres of different radii. As a result of the:e comparisons, it is concluded that the
curvature effect is accurately simulated by @ multiplicative factor involving a Fresnel
integral whose argument is a function of the relevant leaf dimension, the radius of

curvature, the frequency, and the angle of incidence, but independent of the material

properties of the leaf.



Appendix: Flat Plate Analysis
To illustrate the application of the formulas in Section 2, consider a rectangular

resistive plate occupying the region - 5< n<= 2, - -g- <{< %of the plane { =0 and

iluminated by the plane wave (2) as shown in Figure 1. Since there is only an electric

current induced in the plate, the scattered fisld can be attributed to an electric Hertz

vector x. In the backscattering direction the far field expression for mis
(f ———HJ( ¢) e ™™ dn o

where the integration is over the illuminated surface of the plate, and if the physical

optics approximation is employed, it is a trivial matter to determine x. From (3)

ke a/2 b2
() = F_ I J' {1: sina T, (¢) + { cosa cos¢ T (¢)} 2hnsine 4 dt
o o 72
ike
__ﬂ{n sina T, (¢) +§ cosa cos¢ ', (d;)) sinU (A1)
where
U = kasing. (A.2)
The scattered field is
E=VxVxn
and in the far field
s o™
B.23

where the backscattered far field amplitude is

17



.y
3- %ﬂaﬂ{ (€ sng + 1 cos) sina.T,, (¢) + & cosax T (6) Yooso oy (A3)

interms of S the like-polarized backscattering cross section is

2 . =12
0=L| (¢ sina sing + 7 sina cos¢ + { cosa) - S |
T

and the cross-polarized cross section is

2 2
O, ross = A | (¢ cosa sing + 1 cosx cosé - & sina) -3 | -
T
Thus
o=4n l —{sm al\,(e)+ cos alg (¢)}cosp —— smU (A.4)
and
o = 4n | —sma cosa {T, (¢) - e (9) } cos —— smU , (A.5)

cross

and we observe that the cross-polarized return vanishes if at least one of sina, cosa, or

cos¢ is zero or I'g (¢) = I'y (). This last condition is satisfied for a perfectly conducting

plate.

The above example corresponds to the rotation of the direction of incidence in the

&n plane and is equivalent to the rotation of the plate through an angle ¢ about the {
axis with the illumination fixed in space. A more general situation is that in which the
plate is first titted back through an angle B (sae Figure A.1) prior to rotation. In terms of
a rotated coordinate system &', 1", {’ where &' =8cosp + LsinB, W' =1, { =-&sinp + {cosp,

the plate now occupies - 2. n'< i, C <-,and the incident electric field is

2 2



=i ) . A -ik(E’ -n'sing - 'si
E = (& sina sing + N SN cos¢ + C cosau) (5" cosh cosg - ' sing - § sinf cosd) .

Since the unit vector normal to the plate is &', the physical optics expression for

the current that would be induced if the plat3 were perfectly conducting is

Jpc = 2Y {-  cosa sinB cos¢ + 1 (sina: cosP + cosa: sinp sing)

iK(n'si .
+ c cosa :0SP coso} 9' (n'sind + {'sinB cos¢),

which can be written as

Joc = 2Y {(sinc cosB sing + cosa sinB) , + (sina sinp - cosax cosp sing)
-cosP cos¢ { JP oK(n'sind + {sin cos)

where

P=(1- coszﬁ cos2¢)-1/2

and

n,=P(-¢ sinzﬂ cos¢ + 1 sing + { sinP cospP coso)

§ , =P (-& sinB sing + 7 sinB cos¢ - £ cosp sing)

are, respectively, unit vectors in and perpendicular to the plane of incidence, lying in

the plane of the plate. The current induced in the resistive plate is therefore

19



J=2Y {(sina cosP sing + cosa. sinf) r, (¢1)ﬁ 1 + (sina sinf - cosa cosp sing)

+CoSB cosf T (9,) 4 ,} P oW eme + S5ind cos) (A6)

where ¢, is the angle between the negative of the incident field direction and the

normal to the plate, i.e. cos~1(cosp cos¢).

The Herz vector defining the backscatiered field is

e @22

W)= [ [ gy oIS gy,

-a/2-b/2

and when the integration is performed we ottain

ikr
n(r) = i—r % [(sina. cosP sing + cosa. <inp) Iy, n 4 + (sina sinf

- cosa cos sing) cosp cosé I (¢,) { ,|P —— snnU sin sinv

\'

where U is given in (A.2) and

V =kbsinp cos¢ .

The resulting expression for the backscattered far field amplitude is

20



2
-k . A « :’ . .
' ;:b [ (€ sing + 1 cos¢) {sinc [cos™B sinZo r,6,)+ sm2[3 T (0,)]

+ cosa sinf cosP sing [1“H (¢,)-Te (4,)}

+ 8 {cosa [sin” B T}, (4,) + cos’ B sin’d T (9,) ]

S=

+ sina sin cosp sing [T, (¢ - T (6,)]}] P2 cosp cosé % ¥ (A7)

and we note that this reduces to (A.3) when B = 0. The backscattering cross sections

are
ab , . . .2 . ,
c=4n T{(sma cosp sing + cosa sif) T,(4,) + (sina sinp
-cosa. CosP sinq>)2 Te (4, p cosp coso f%iﬂ:}l (A.8)

and

O, 0ss = 4T i—b(sina cosp sing + cosw sinP) (sina sinP - cosa cosP sing)

. U . V 2
 {Tyy(6) T (0,)} P* cosB cosg === | (A9

As required, these reduce to (A.4) and (A.5) when B = 0, and for all § the
cross-polarized return vanishes for a perfectly conducting plate. A comparison with
measured data for a leaf is given in Section 5.
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Figure Captions

Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

Figure 7:

Figure 8:

Figure 9:

Geometry for the scattering of a plane wave from a resistive sheet lying in
the plane & = 0.

Geometry for the scattering of a plane wave from a resistive sheet which
conforms to a portion of the surface of a right circular cylinder of radius p.

Geometry for the scattering of a plane wave from a resistive sheet which
occupies a portion of the surface of a sphere of radius r at normal
incidence.

Schematic of the RCS measurament system.

Comparison of the measured FICS with the theorstical expression (A.4)
for a rectangular section (a = 4 cm, b = 6 cm) of a cut coleus leaf with Mg =

0.7 and t = 0.5 mm for E-polarization (x = 0), =0 and A = 3 cm.

Comparison of the measured RCS (***) with the theoretical expression
(A.8) (—) for the rectangular section of the coleus leaf with Mg = 0.7 and

T = 0.5 mm for E-polarization (« = 0), B =8degand A =3 cm. The
theoretical cross polarized RCS (A.9) (xxx) is also shown.

RCS of a rectangular resistive sheet computed using the moment method
(lines) and the numerical summation (9) (points) for p = 2\ (---, xxx) and p
= (—, 000). The size and rasistivity of the sheet are the same as in
Figure 5 witht =0.32 mm and A = 3cm.

RCS of a rectangular resistive sheet computed using the numerical
summation (9) (lines) and the Fresnel integral approximation (13) (points)

for p = 2A (---, xxx) and p = 3L (—, 000). The size and resistivity of the
sheet are the same as in Figure 5 with t =0.32 mm and A = 3 cm.

Comparison of the measured RCS (***) reduction at normal incidence
with the numerical summation (19) (—) and the Fresnel integral
approximation (15) (---) for a ore dimensionally curved rectangular

section of a coleus leaf versus radius of curvature (t = 0.32 mm, A = 3 cm).
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Figure 10:

Figure 11:

Figure A-1:

Comparison of the measured FCS (***) reduction at normal incidence
with the numerical summation (19) (—) and the Fresnel integral
approximation (21) (---) for a sp-herically curved section of a coleus leaf

versus radius of curvature (t = 3.32 mm, A = 3 cm).

Normal incidence RCS reducticn versus frequency due to the one
dimensional curvature of a rectangular section of a leaf with Mg = 0.7 and

T = 0.5 mm for three different radii of curvature using the numerical (9)
(—) and analytical (15) (---) expressions.

Geometry for the scattering of it plane wave by a tilted resistive sheet.

23



References

1.

LeVine, D. M., A. Schneider, R. H. Lang, and H. G. Carter, "Scattering from thin
dielectric disks,” IEEE Trans. Antennas Propagat. Vol. AP-33, No. 12, pp.
1410-1413, 1985.

Borel, C. C., and R. E. Mcintosh, "A backscattering model for various foliated
deciduous tree types at millimeter wavelengths," Proceedings of IEEE Geosci.
Remote Sens. Symposium, Zurich, 8-11 Sept. 1986.

Senior, T. B. A., K. Sarabandi, and F. T. Ulaby, "Measuring and modeling the
backscattering cross section of a leaf,” Radio Sci., in press.

Ulaby, F. T., and M. El-Rayes, "Microwave dielectric spectrum of vegetation
material,” Proceedings of IEEE Geosci. Remote Sens. Symposium, Zurich, 8-11
Sept. 1986.

Liepa, V.V., E. F. Knott, and T.B.A. Senior, "Scattering From Two-Dimensional
Bodies with Absorber Sheets,” Radiation Laboratory Report No. 011769-2-T, The
University of Michigan, May 1974.



At










styrofoam

leaf

stepper
motur

horn antenna

/ steppar

? y string motor
ab

HP 8510 absorber

HP 9000

HP 8511 computer




"i“

,’&

\—q

IIIII]’[Ill]llillllflll’ltirfrlll lr:]vvlllnlrllrlrrﬁ"‘n’

= I =
¥ 8

Q o
203

-40

(wsdp) vA9Y NOILOAS SSOHD

ITYII'IIII]IIIIIIIII"'I ll“llllll llllllllli!]l]]l[!ll' IIUIIITIITTTTIYIITTTTT]I’]]UYU

-90.

-70

-50. -30. -10. 10. 30. 50. /0. 90.

-70.

INCIDENCE ANGLE (Degrees)



x"r‘E

x"x‘x E

28 C
"f E

K =

§0 z&‘l;‘ =

. » -

\ & >—“,&_x_«
(] =

*. Q.J' ' ,‘,r“"x E

iz

{f “I‘x =
s'x,‘ .

"'k ‘x‘k -

"~ ! o —— Nl

2 r—— —1t

2-* o24 x"rx- o

F X =
. N =

x"x'r— C

. ol
*y —
s SN C
- » -
Te——— e =

‘ =

.l

» -
(,/’ T

lx —

» f :

by C

Lt SN "xs'x. t

e~y % n =
.-%— TR

e L

st =t

KL ot

i i :

C

‘g\ F

> E

. \ Xx =

b3 B =

,-

%,
ITTTI_rITII LIRILIRI LELIAEL Trry LIRSl LERELEL) Trry revT TV Tn LR IR
| | [ | !
o en] (] (e ] (oo (=]
N o T w (e N
|

(wsdp) VA4V NOILLOJAS SS0Y¥D

-70. -50. -30. -10. 10. 30. 0. 70. 90.

-30.

INCIDENCE ANGLE (Degrees)



(= 4 p—

ox -

ac -

© o

b3 -

x C

(=2 4 o

o x

x o o

x - o

x =

x =

x [ ol

X/ o

—~K C

o p=
-

x Q -

x( (=) »

’> oF-

/"'} — o C

x” C_ C

x o
6:‘ -
% C
| —a=t
\x""x C;MH:

x> oy

x Q -

x\ o L

% o »

< -

~¢ =

XN -

x ™

x =

x \ C

x N\ o =

x o c

oxl.

ox -

@ L

D p—

b C

[-'3 -

ox C
IIIII’IIVIIIIIIllrlii[]fllt.rn_rﬂ_r__
w0 W W W
0 h i ¥

(wsgp) vayv NOILOAS SSO0ID

-70. -50. -30. -10. 10. 30. 50. 70. 30.

-90.

INCIDENCE ANGLE (Degrees)



llllllllllll|lll||llll|ll|lll‘Illlllllll‘llllllllllll|lllll|llllllll||llH

Frrrrrr LI B B S LB L A TT T 7t Lo
ws W w w
-~ N o v"

(wsgp) vIIV NOLLOES SS0JD

-70. -50. -30.  -10. 10. 30. 50. /0. 30.

-30.

INCIDENCE ANGLE (Degrees)



1.0
0.9
0.8
0.7
0.6
0.5
0.4

0.3

o(curved) /o(flat)

0.2
0.1

lllllllllllllllllllllllllJ‘lllllllJllllllllllllll]

-
3'1
—Q

YEE 1=®

0.0

0.

lllll'llllllllll'lll!lllll'lllllll]1l|l‘llllllll

i, 2. 3 4 5 6 7. 8 S
p/A

IIIIIII

16. 11



e o o =
o N ® v o

O(curved) /o(flat)
o o o [e=] [«)
R N T

jllllllllllllllllllll‘llllllllllllllllljljlllllll

e
o

0.

lllllllll'lll'l“ll'llllllllilll[l‘l'lllllllllllll"'ll_l

1.

2.

3.

4.

5.

R/A

6.

7.

8.

S.

10.

11.



O(curved)/o(flat)
© © © @ © o © o o -
— N w D N o ~ [e o] (o) [«

I
o

AllllllllJllllllllllllltlllllljlllllllllllllllllll

0.

llllllllIlllllllllilllllllllllTllllIllll

5. 10. 15. 20. 25. 30. 35. 40.
FREQUENCY (GHz)






